Volume 1|前世今生:微生物电化学技术处理制药废水
来源:SUS_Horizons | 作者:SUS_Horizons | 时间:2022-02-16 | 363 次浏览 | 分享到:
The Ins and Outs of Pharmaceutical Wastewater Treatment by Microbial Electrochemical Technologies

近日,中国科学院广州地球化学研究所的金彪研究员团队和丹麦技术大学的张翼峰教授团队在 Sustainable Horizons 联合发表文章“The Ins and Outs of Pharmaceutical Wastewater Treatment by Microbial Electrochemical Technologies”。 

本文对制药废水的微生物电化学处理相关研究进展进行了梳理,总结、归纳了采用METs降解废水中残留药物的新近成果,并深入探讨了当前遇到的挑战和未来研究的前景,希望通过这项工作全面评估、推进这项污水处理新技术的进步,进而为新污染物治理提供可靠的技术支撑。

原文链接:https://doi.org/10.1016/j.horiz.2021.100003


————


- 研究方法 -


目前, 基于微生物电化学技术去除污水中残留药物的研究主要采用了微生物燃料电池(MFCs)和生物电芬顿(BEF)技术。 

1. 微生物燃料电池(MFCs) 

MFCs是一种新型的生物电化学装置,通过将生物催化反应与电化学过程结合,释放有机污染物中的能量并转换为电能。污染物被氧化后在阳极释放出电子,电子通过外部电路转移到阴极,然后与电子受体发生反应。MFC的主要特点是实现了污染物消减同时产生电能,其性能是以发电量和污染物去除效率来衡量的,阳极和阴极通常由一个外部电阻连接。 

研究发现,与一般的厌氧生物处理相比,MFCs对有机污染物的去除效率更高。基于这一发现,研究人员推测除生物降解的效率外,MFCs还具有直接或间接氧化某些电解质的电化学催化作用,通过在电极表面形成强氧化性分子如活性氧来促进污染物去除。另外,阳极室中的微生物代谢活动可能影响有机污染物的降解。因此,通过MFCs去除废水中的药物的机理主要可以分为如下——(1)阳极氧化:污染物被降解同时生成电子;(2)阳极还原:污染物接受电子并在阳极被还原;(3)吸附:电极和/或电化学活性生物膜对污染物的吸附;(4)阴极还原:污染物在阴极接受电子并被还原。

2. 生物电芬顿系统(BEF) 

生物电化学系统,如MFCs和MECs,已被证明是合成过氧化氢(H2O2)的重要替代方法。化学污染物可被生长在MFCs阳极上的微生物氧化分解,同时产生电子和质子。质子和电子通过膜和外部电路进入阴极室,然后它们可以在阴极室中与O2反应形成H2O2,同时产生电能。与之相似的MECs则需要少量的电力输入并能够在阴极生成高浓度的H2O2。与传统的电化学技术相比,MECs生产H2O2的能耗较低。H2O2的原位合成扩展了生物电化学系统的水处理应用,例如与芬顿反应相结合的水处理技术可以在阴极原位合成的H2O2并Fe2+反应生成羟基自由基,氧化水中的药物。这种联合系统被称为生物电芬顿(BEF)系统。 

BEF系统大致分为MFC-BEF系统、MEC-BEF系统、MFC作为外接电源的MEC-BEF系统、MREC (微生物反向电渗析电池)-BEF系统和MFC作为外接电源的EF系统。值得一提的是,处理系统的水溶液条件,例如pH、温度和污染物的初始浓度等,以及不同电极材料都会影响MET对水中药物的去除效率和转化途径,因此需要进行系统优化。


- 结论和展望 -


本文总结了采用METs去除污水中残留药物的新近成果,具体比较了不同水处理技术之间的优势和短板,对重要实验参数和实验条件进行了评估和归纳,介绍了不同药物的消减机制和转化机理,并提出结合先进的化学分析和表征手段将更好地示踪污染物在MET系统中的“命运”,进而全面评估和优化这项技术对不同靶向污染物的去除效率。

笔者希望通过该项工作推进MET污水处理新技术的进步,为药物等新污染物的治理和环境减排提供可靠的技术支撑,最终服务水资源的可持续性开发和利用。



作者简介

First Author: Wenli Xu (MSc.) obtained her master degree at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. She is now working as an analytical chemist in CAS-Testing. Her research interest is to develop analytical tools to understand chemicals fate in microbial electrochemical systems. Her study contributes to the optimization and development of compound-specific remediation solutions for chemical removal in contaminated water.

Corresponding Author: 

Dr. Biao Jin is currently working as a senior researcher at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. His research involves both fundamental and applied aspects associated with organic chemical pollutants in water. Emerging tools such as compound specific isotope analysis (CSIA) are developed to characterize different contaminant sources and also to study the behavior of different chemical pollutants in both engineered and natural aquatic systems including wastewaters, surface water, and groundwater. The ultimate goal is to protect water resources from chemical emissions.

Dr. Yifeng Zhang is currently working as an associate professor at the Department of Environmental Engineering, Technical University of Denmark (DTU). His major research interests are microbial electrochemistry and biotechnology to support the 2nd, 6th, 7th, 12th, and 13th UN SDGs through sustainable water treatment, resource recovery, CO2 capture and utilization, biosynthesis, and environmental bioremediation & monitoring. His primary research interests are to improve the fundamental understanding of microbial electrochemistry and develop cutting-edge, efficient, and economic-affordable technical solutions in the Water-Food-Energy-Climate nexus for sustainable development and green transition. This way, the wastewaters and greenhouse gases (e.g., CO2), which otherwise are treated as pollutants undergoing energy and carbon-intensive treatment processes, are recovered and upcycled in the form of valuable bioproducts such as chemicals, biofuels, proteins, and energy. The detail of his research can be found here https://orbit.dtu.dk/en/persons/yifeng-zhang.


引用格式:

Xu W. , Zou R., Jin B. , Zhang G. , Su Y. , Zhang Y. , The Ins and Outs of Pharmaceutical Wastewater Treatment by Microbial Electrochemical Technologies. Sustainable Horizons. 2022. 1, 100003.


期刊官网(英文):https://journals.elsevier.com/sustainable-horizons

期刊官网(中文):https://www.sustainable-horizons.com/

Linkedin Page:Sustainable Horizons

投稿链接:https://www.editorialmanager.com/horiz/default1.aspx



版权声明:

本文由 Sustainable Horizons 负责发布,欢迎转发分享至朋友圈,如需转载,应声明出处。Sustainable Horizons 为英文开源学术期刊,以上中文标题、内容仅供参考,具体内容请以英文原文为准。投稿、合作、转载请发送邮件至sush_journal@sustech.edu.cn,我们将在第一时间回复您的信息。